Definite and Semidefinite Quadratic Forms
Author(s): Gerard Debreu
Source: Econometrica, Vol. 20, No. 2 (Apr., 1952), pp. 295-300
Published by: The Econometric Society
Stable URL: http://www.jstor.org/stable/1907852
Accessed: 11-08-2015 16:59 UTC

Your use of the JSTOR archive indicates your acceptance of the Terms \& Conditions of Use, available at http://www.jstor.org/page/ info/about/policies/terms.jsp

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.
http://www.jstor.org

DEFINITE AND SEMIDEFINITE QUADRATIC FORMS¹

By Gerard Debreu

The problem of maximization (or minimization) of a function $f(\xi)$ of a vector ξ, possibly constrained by m relations $g_{j}(\xi)=0(j=1, \cdots, m)$, is outstanding in the classical economic theories of the consumer (who maximizes utility subject to a budgetary constraint) and of the firm (which maximizes profit subject to technological and other constraints). The calculus treatment of this question (see for example [5]) leads to a scrutiny of the conditions that a quadratic form be definite or semidefinite, with or without linear constraints. These conditions have also found an important application in studies of the equilibrium stability of a multiple-market economy. However, although they were frequently used, it is rather difficult to find short and complete proofs in the literature. Original proofs are given here in a unified treatment of the subject.
A, B, x are matrices of orders ${ }^{2} n \cdot n, n \cdot m, n \cdot 1 . M$ being a matrix, $M_{p q}$ is obtained from M by keeping only the elements in the first p rows and the first q columns; M_{p} stands for $M_{p p}$; when M is square, $|M|$ is its determinant. Primed letters denote transposes.

1. definite quadratic forms

$m_{i j}$ is the i th row, j th column element of $M ; x_{i}$ stands for $x_{i 1} ; L_{r}$ is a linear form in the variables $x_{i}, r \leqslant i \leqslant n$, whose coefficient of x_{r} is unity. As a matter of convention, $\left|A_{0}\right|=1$.

Theorem 1: Let A be symmetric. $x^{\prime} A x=\sum_{r=1}^{n}\left(\left|A_{r}\right| /\left|A_{r-1}\right|\right)\left(L_{r}\right)^{2}$ if and only if $\left|A_{r}\right| \neq 0$ for $r=1, \cdots, n-1$.

Necessity: ${ }^{3}$ Obvious. Sufficiency: Perform on the quadratic form Q_{1} $\left(x_{1}, \cdots, x_{n}\right)=x^{\prime} A x$ a standard decomposition into squares and assume that after the first $r-1$ steps Q_{1} has been written in the form

$$
\begin{align*}
& Q_{1}\left(x_{1}, \cdots, x_{n}\right) \\
& \quad=\sum_{i, j} a_{i j} x_{i} x_{j}=c_{1}\left(L_{1}\right)^{2}+\cdots+c_{r-1}\left(L_{r-1}\right)^{2}+Q_{r}\left(x_{r}, \cdots, x_{n}\right), \tag{1}
\end{align*}
$$

${ }^{1}$ This paper is a result of the work being done at the Cowles Commission for Research in Economics on the "Theory of Resource Allocation" under subcontract to The RAND Corporation. Based on Cowles Commission Discussion Paper, Mathematics, No. 407, July, 1951. To be reprinted as Cowles Commission Paper, New Series, No. 58.

Acknowledgment is due to staff members of the Cowles Commission and in particular to J. Marschak, whose interest led to the conception of this paper, and to M. Slater, with whom I had most valuable discussions. I am also indebted to H . Hotelling for reference [6].
${ }^{2}$ A matrix of order $n \cdot m$ is one having n rows and m columns.
${ }^{8}$ In all the equivalence statements of the form " U if and only if V," the necessity part is understood to be " U implies V;" the sufficiency part, " V implies U."
where $c_{i} \neq 0$ for $i=1, \cdots, r-1$, and Q_{r} is a quadratic form in the variables $x_{i}, r \leqslant i \leqslant n$. We wish to find the coefficient c_{r} of x_{r}^{2} in Q_{r}.
Set $x_{i}=0$ for $i=r+1, \cdots, n$, and then derive from (1) the r identities

$$
\begin{aligned}
& \frac{1}{2} \frac{\partial Q_{1}}{\partial x_{i}}=\sum_{j=1}^{r} a_{i j} x_{j}=\sum_{j=1}^{i} c_{j} L_{j} \frac{\partial L_{j}}{\partial x_{i}} \quad(i=1, \cdots, r-1), \\
& \frac{1}{2} \frac{\partial Q_{1}}{\partial x_{r}}=\sum_{j=1}^{r} a_{r j} x_{j}=\sum_{j=1}^{r-1} c_{j} L_{j} \frac{\partial L_{j}}{\partial x_{r}}+c_{r} x_{r} .
\end{aligned}
$$

Make $L_{j}=0$ for $j=1, \cdots, r-1$. This system has a nonzero solution and therefore also

$$
\begin{aligned}
& \sum_{j=1}^{r} a_{i j} x_{j}=0 \quad(i=1, \cdots, r-1), \\
& \sum_{j=1}^{r} a_{r j} x_{j}-c_{r} x_{r}=0, \\
& \text { i.e., } \quad\left|\begin{array}{cc}
A_{r-1} & a_{i r} \\
a_{r j} & a_{r r}-c_{r}
\end{array}\right|=\begin{array}{lll}
0 & \text { or } & c_{r}=\frac{\left|A_{r}\right|}{\left|A_{r-1}\right|} .
\end{array}
\end{aligned}
$$

Since $\left|A_{r}\right| \neq 0$, it is possible to perform the r th step.
Theorem 2: Let A be symmetric. $x^{\prime} A x>0$ (resp. <0) for every $x \neq 0$ if and only if $\left|A_{r}\right|>0\left[\right.$ resp. $\left.(-1)^{r}\left|A_{r}\right|>0\right]$ for $r=1, \cdots, n$.

If $A x=0$ had a nonzero solution x_{0}, one would have $x_{0}^{\prime} A x_{0}=0$, and the quadratic form would not be definite. It is therefore necessary that $|A| \neq 0$ and more generally $\left|A_{r}\right| \neq 0$ for $r=1, \cdots, n$ [set x_{r+1}, \cdots, x_{n} all equal to zero; the quadratic form $Q_{1}\left(x_{1}, \cdots, x_{r}, 0, \cdots, 0\right)$ must also be definite].

A straightforward application of Theorem 1 then proves the statement.

2. quadratic forms definite under linear constraints

Theorem 3: $x^{\prime} A x>0(r e s p .<0)$ for every $x \neq 0$ such that $B^{\prime} x=0$ if and only if there exists a number λ such that $x^{\prime} A x+\lambda x^{\prime} B B^{\prime} x$ is a positive (resp. negative) definite quadratic form.

Sufficiency: Obvious. Necessity: The function $\theta(x)=-\left(x^{\prime} A x / x^{\prime} B B^{\prime} x\right)$ is continuous on the set $\left\{x \mid x^{\prime} x=1\right.$ and $\left.B^{\prime} x \neq 0\right\}$, and tends to $-\infty$ (resp. $+\infty$) whenever x tends to a boundary point; it has therefore a finite maximum (resp. minimum) λ^{*}. Any $\lambda>\lambda^{*}$ (resp. $<\lambda^{*}$) has the desired property. ${ }^{4}$

[^0]Lemma: $\left|A+\lambda B B^{\prime}\right|$ is a polynomial in λ whose term of highest order (possibly null) is (-1$)^{m}\left|\begin{array}{cc}A & B \\ B^{\prime} & 0_{m}\end{array}\right| \lambda^{m}$.

From

$$
\left[\begin{array}{cc}
A & \lambda B \\
B^{\prime} & -I_{m}
\end{array}\right]\left[\begin{array}{cc}
I_{n} & 0_{n m} \\
B^{\prime} & I_{m}
\end{array}\right]=\left[\begin{array}{cc}
A+\lambda B B^{\prime} & \lambda B \\
0_{m n} & -I_{m}
\end{array}\right]
$$

follows $\left|\begin{array}{cc}A & \lambda B \\ B^{\prime} & -I_{m}\end{array}\right|=(-1)^{m}\left|A+\lambda B B^{\prime}\right|$. In the development of the left-hand determinant a term contains the highest possible power of λ if in every one of the last m columns one takes an element of λB. Such terms are unaffected if $-I_{m}$ is replaced by any other $m \cdot m$ matrix: take 0_{m}.

Theorem 4: Let A be symmetric and $\left|B_{m}\right|$ be different from zero. $x^{\prime} A x>$ 0 for every $x \neq 0$ such that $B^{\prime} x=0$ if and only if $(-1)^{m}\left|\begin{array}{cc}A_{r} & B_{r m} \\ B_{r m}^{\prime} & 0\end{array}\right|>0$ for $r=m+1, \cdots, n .{ }^{5}$

Necessity: Consider the equations $\left\{\begin{array}{ll}A x+B y & =0 \\ B^{\prime} x & =0\end{array}\right.$ where y is a $m \cdot 1$ matrix. A solution $\left[\begin{array}{l}x \\ y\end{array}\right]$ is such that $x^{\prime} A x+x^{\prime} B y=0$, i.e., $x^{\prime} A x=0$. This must imply $x=0$, therefore $B y=0$, and, since $\left|B_{m}\right| \neq 0, y=0$. The system must have no other solution than 0, i.e., $\left|\begin{array}{ll}A & B \\ B^{\prime} & 0\end{array}\right| \neq 0$.

From Theorem 3 and Theorem 2, for every $\lambda>\lambda^{*}$ one must have $\left|A+\lambda B B^{\prime}\right|>0$.

From the lemma one must have $(-1)^{m}\left|\begin{array}{cc}A & B \\ B^{\prime} & 0\end{array}\right|>0$.
This argument can be made for any $r, m \leqslant r \leqslant n$.
Sufficiency: I shall prove that the coefficient of the term of highest order in λ of $\left|A_{r}+\lambda B_{r m} B_{r m}^{\prime}\right|$ is positive for all $r=1, \cdots, n$. It will therefore be possible to choose λ large enough to make these n leading minors positive and consequently $\left[A+\lambda B B^{\prime}\right]$ positive definite (Theorem 2).

[^1](a) If $r>m$, it is true by assumption.
(b) If $r \leqslant m$, write (cf. proof of the lemma)
\[

(-1)^{m}\left|A_{r}+\lambda B_{r m} B_{r m}^{\prime}\right|=\left|$$
\begin{array}{cc}
A_{r} & \lambda B_{r m} \\
B_{r m}^{\prime} & -I_{m}
\end{array}
$$\right|=\lambda^{r}\left|$$
\begin{array}{cc}
(1 / \lambda) A_{r} & B_{r m} \\
B_{r m}^{\prime} & -I_{m}
\end{array}
$$\right|
\]

When λ tends to $\pm \infty,(1 / \lambda) A_{r}$ tends to 0_{r} and therefore the (possibly null) term of highest order of the left-hand polynominal in λ is λ^{r} $\left|\begin{array}{cc}0_{r} & B_{r m} \\ B_{r m}^{\prime} & -I_{m}\end{array}\right|$. The quadratic form $-y^{\prime} y$ is negative definite; it is a fortior negative definite under the constraint $B_{r m} y=0$. Moreover, not all $r \cdot r$ minors of $B_{r m}$ can vanish since $\left|B_{m}\right| \neq 0$. Therefore, according to the proof of necessity in Theorem 5 (which is identical to that in Theorem 4), (-1$)^{m}\left|\begin{array}{cc}0_{r} & B_{r m} \\ B_{r m}^{\prime} & -I_{m}\end{array}\right|>0$.

A similar argument proves
Theorem 5: Let A be symmetric and $\left|B_{m}\right|$ be different from zero. $x^{\prime} A x<0$ for every $x \neq 0$ such that $B^{\prime} x=0$ if and only if $(-1)^{r}$ $\left|\begin{array}{cc}A_{r} & B_{r m} \\ B_{r m}^{\prime} & 0\end{array}\right|>0$ for $r=m+1, \cdots, n$.

3. SEmidefintte quadratic forms

Let π denote a permutation of the first n integers; A^{π}, the matrix obtained from A by performing the permutation π on its rows and on its columns; B^{π}, the matrix obtained from B by performing the permutation π on its rows.
Theorem 6: $x^{\prime} A x \geqslant 0(r e s p . \leqslant 0)$ for every x if and only if $x^{\prime} A x+$ $\alpha x^{\prime} x>0($ resp. <0) for every $x \neq 0$ and every $\alpha>0$ (resp. <0).

Necessity: Obvious. Sufficiency: Obvious by a continuity argument.
Theorem 7: Let A be symmetric. $x^{\prime} A x \geqslant 0$ (resp. $\leqslant 0$) for every x if and only if $\left|A_{r}^{\pi}\right| \geqslant 0\left[r e s p .(-1)^{r}\left|A_{r}^{\pi}\right| \geqslant 0\right]$ for all $r=1, \cdots, n$ and all π.

Necessity: From Theorem 6 and Theorem 2, $\left|A_{r}^{\pi}+\alpha I_{r}\right|>0$, for $r=1, \cdots, n, \alpha>0$, and any π. This implies $\left|A_{r}^{\pi}\right| \geqslant 0$ for $r=1, \cdots$, n and any π.

Sufficiency: $\left|A_{r}+\alpha I_{r}\right|=\alpha^{r}+\sum_{\substack{r-1 \\ i=0}} \alpha^{i} S_{r-i}^{r}$ where S_{i}^{r} is the sum of all the principal minors of A_{r} of order i. From the assumption, every S_{i}^{r} is nonnegative and, if α is positive, the right-hand member is positive. This implies (Theorem 2) that the quadratic form $x^{\prime} A x+\alpha x^{\prime} x$ is positive definite for any $\alpha>0$. An application of Theorem 6 yields the result.

The result for negative forms is proved by a transposed argument.

4. quadratic forms semidefinite under linear constraints

The same techniques yield
Theorem 8: $x^{\prime} A x \geqslant 0(r e s p . \leqslant 0)$ for every x such that $B^{\prime} x=0$ if and only if $x^{\prime} A x+\alpha x^{\prime} x>0($ resp. < 0) for every $\alpha>0$ (resp. < 0) and every $x \neq 0$ such that $B^{\prime} x=0$.

Theorem 9: Let A be symmetric and $\left|B_{m}\right|$ be different from zero. $x^{\prime} A x \geqslant 0$ for every x such that $B^{\prime} x=0$ if and only if $(-1)^{m}\left|\begin{array}{cc}A_{r}^{\pi} & B_{r m}^{\pi} \\ B_{r m}^{\pi \prime} & 0\end{array}\right|$ $\geqslant 0$, for $r=m+1, \cdots, n$ and any π.
[Note that now the term of highest order in α in the development of $(-1)^{m}\left|\begin{array}{cc}A_{r}+\alpha I_{r} & B_{r m} \\ B_{r m}^{\prime} & 0\end{array}\right|$ is $\alpha^{r-m} \sum\left|\tilde{B}_{m}\right|^{2}$ where \tilde{B}_{m} is any $m \cdot m$ submatrix of $B_{r m}$ whose rows are in the natural order.]

Theorem 10: Let A be symmetric and $\left|B_{m}\right|$ be different from zero. $x^{\prime} A x \leqslant 0$ for every x such that $B^{\prime} x=0$ if and only if $(-1)^{r}\left|\begin{array}{cc}A_{r}^{\pi} & B_{r m}^{\pi} \\ B_{r m}^{\pi_{m}^{\prime}} & 0\end{array}\right|$ $\geqslant 0$, for $r=m+1, \cdots$, and any π.

5. historical note

The idea of the decomposition into squares of Theorem 1 goes back to Lagrange [4] who performed it, however, only in the cases $n=2,3$ and did not conjecture the general form of the coefficient $\left|A_{r}\right|\left|A_{r-1}\right|$. This decomposition was given for the first time in all its generality by F. Brioschi [1].

The form of the conditions used in the statements of Theorems 4 and 5 appeared for the first time in a paper by H. Hotelling [3] (in the case $m=1$). The first complete statement and proof of Theorems 4 and 5 are due to H. B. Mann [6]. ${ }^{6}$

The method used by Hotelling [3], and Samuelson [8, pp. 376-378], which goes back to Richelot [7], consists in studying the roots of the equation in $\lambda,\left|\begin{array}{cc}A-\lambda I_{n} & B \\ B^{\prime} & 0\end{array}\right|=0$. It easily proves Theorems 9 and

[^2]10 and the necessity of the conditions given in Theorems 4 and 5, but it does not prove that it is sufficient that the leading minors of $\left|\begin{array}{ll}A & B \\ B^{\prime} & 0\end{array}\right|$ be of the proper signs.
Similarly, the study [8, pp. 370-375] of the roots of $|A-\lambda I|=0$ easily proves Theorem 7 and the necessity of the conditions of Theorem 2; it cannot prove their sufficiency without additional steps (see [2]).

Cowles Commission for Research in Economics

REFERENCES

[1] Brioschi, F., 'Sur les séries qui donnent le nombre de racines réelles des équations algébriques à une ou plusieurs inconnues," Nouvelles Annales de Mathématiques, Vol. 15, 1856, pp. 264-286.
[2] Caratheodory, C., Variationsrechnung und partielle Differentialgleichungen erster Ordnung, Leipzig: B. J. Teubner, 1935, pp. 164-189.
[3] Hotelling, H., "Demand Functions with Limited Budgets," Econometrica, Vol. 3, January, 1935, pp. 66-78.
[4] Lagrange, J. L., "Recherches sur la méthode de maximis et minimis," Oeuvres, Vol. 1, 1759, pp. 3-20.
[5] La Vallee Poussin, Ch.-J., Cours d'Analyse Infinitésimale, New York: Dover Publications, 1946, Vol. 1, 8th ed., Chapter III, Section 4 and Chapter IV, Section 3.
[6] Mann, H. B., "Quadratic Forms with Linear Constraints," American Mathematical Monthly, Vol. 50, August-September, 1943, pp. 430-433.
[7] Richelot, "Bemerkungen zur Theorie der Maxima und Minima," Astronomische Nachrichten, Vol. 48, No. 1146, 1858, pp. 273-286.
[8] Samuelson, P., Foundations of Economic Analysis, Cambridge, Mass.: Harvard University Press, 1947, 448 pp.

[^0]: ${ }^{4} \mathrm{As} B^{\prime} x=0$ is equivalent to $x^{\prime} B B^{\prime} x=0$, "under the constraint $B^{\prime} x=0, x^{\prime} A x$ is positive definite" is equivalent to "under the constraint $x^{\prime} B B^{\prime} x=0, x^{\prime} A x$ has a minimum reached at, and only at, $x=0$." The Lagrange multiplier technique could thus hint at the existence of a number λ such that $x^{\prime} A x+\lambda x^{\prime} B B^{\prime} x$ has a minimum reached at, and only at, $x=0$.

[^1]: ${ }^{5}$ The symbol B_{m} implies by itself that $m \leqslant n$. The second half of this statement may be expressed in another and perhaps more convenient form: ". . if and only if every northwest principal minor of $\left[\begin{array}{ll}0 & B^{\prime} \\ B & A\end{array}\right]$ of order larger than $2 m$ has the sign of $(-1)^{m}$." A similar remark can be made for the statement of Theorem 5 .

[^2]: ${ }^{6}$ Other proofs, rather intricate, were given for Theorem 4 by S. N. Afriat ("The Quadratic Form Positive Definite on a Linear Manifold," Proceedings of the Cambridye Philosophical Society, Vol. 47, January, 1951, Part I, pp. 1-6), for Theorems 4 and 5 by J. Seitz ("Note sur un problème fondamental de la théorie de l'équilibre économique," Aktuárské Vědy, Vol. 8, 1949, pp. 137-144), and for a particular case of Theorem 5 ($m=1$, all elements of B equal to unity) by M. Allais (A la recherche d'une discipline économique, Vol. I, Paris: Ateliers Industria, 1943, Annexes, pp. 25-28).

